machine learning exercise6 Coursera
第六次上机作业:
gaussianKernel.m
dataset3Params.m
processEmail.m
emailFeatures.m
gaussianKernel.m高斯核函数
sim = exp(-sum((x1 - x2) .^ 2) / (2 * sigma * sigma));
dataset3Params.m求最优的C和sigma
function [C, sigma] = dataset3Params(X, y, Xval, yval)
C = 1;
sigma = 0.3;
right_c = C;
right_sigma = sigma;
error = 1;
predictions = zeros(size(yval),1);
t = [0.01;0.03;0.1;0.3;1;3;10;30];
for i = 1:8
for j = 1:8
C = t(i);
sigma = t(j);
%调用包里的svmTrain函数
model = svmTrain(X, y , C, @(x1, x2) gaussian
...