机器学习实战-svm

svm实现

相关博客:

http://www.cnblogs.com/dreamvibe/p/4349886.html

http://blog.csdn.net/macyang/article/details/38782399/

from numpy import *

#文件操作
def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat,labelMat

#随机选择另一个α优化
def selectJrand(i,m):
    j=i
    while (j==i):
        j = int(random.uniform(0,m))
    return j

#控制范围在L和H之间
def clipAlpha(aj,H,L):
    if aj > H: 
        aj = H
    if L > aj:
        aj = L
    return aj

#简单版本的smo算法,随机选择aj
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
    b = 0; m,n = shape(dataMatrix)
    alphas = mat(zeros((m,1)))
    iter = 0
    while (iter < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                j = selectJrand(i,m)
                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H: print "L==H"; continue
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0: print "eta>=0"; continue
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                if (0 < alphas[i]) and (C > alphas[i]): b = b1
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                else: b = (b1 + b2)/2.0
                alphaPairsChanged += 1
                print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
        if (alphaPairsChanged == 0): iter += 1
        else: iter = 0
        print "iteration number: %d" % iter
    return b,alphas

#记录alphas值的数据结构,便于选取aj
class optStruct:
    def __init__(self, dataMatIn, classLabels, C, toler, kTup):
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m, 1)))
        self.b = 0
        self.eCache = mat(zeros((self.m, 2)))
        self.K = mat(zeros((self.m, self.m)))
        for i in range(self.m):
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

#计算错误的中间函数
def calcEK(oS, k):
    fXk = float(multiply(oS.alphas, oS.labelMat).T * \
    oS.K[:, k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

#选取最佳的j
def selectJ(i, oS, Ei):
    maxK = -1; maxDeltaE = 0; Ej = 0
    oS.eCache[i] = [1, Ei]
    validEcacheList = nonzero(oS.eCache[: ,0].A)[0]
    if(len(validEcacheList)) > 1:
        for k in validEcacheList:
            if k == i: continue
            Ek = calcEK(oS, k)
            deltaE  =  abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxDeltaE = deltaE
                maxK = k
                Ej = Ek
        return maxK, Ej
    else:
        j = selectJrand(i, oS.m)
        Ej = calcEK(oS, j)
    return j, Ej

def updateEk(oS, k):
    Ek = calcEK(oS, k)
    oS.eCache[k] = [1, Ek]

#迭代内循环
def innerL(i, oS):
    Ei = calcEK(oS, i)
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or \
    ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        j, Ej = selectJ(i, oS, Ei)
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L == H: print 'L==H'; return 0
        eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j]
       # eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :]*oS.X[i, :].T - oS.X[j, :]*oS.X[j,:].T
        if eta >= 0: print 'eta>=0';return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei-Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
        updateEk(oS, j)
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            print 'j not moving enough'; return 0
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
        updateEk(oS, i)
        b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] -\
        oS.labelMat[j]*(oS.alphas[j] - alphaJold) * oS.K[i, j]
        b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) *oS.K[i, j] -\
        oS.labelMat[j]*(oS.alphas[j] - alphaJold) * oS.K[j, j]
        # b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * \
        # oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*\
        # (oS.alphas[j] - alphaJold) * oS.X[i,:]* oS.X[j,:].T
        # b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * \
        # oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*\
        # (oS.alphas[j] - alphaJold) * oS.X[j,:]* oS.X[j,:].T
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else: return 0

#完整版smo算法
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup = ('lin', 0)):
    oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler, kTup)
    iter = 0
    entireSet = True; alphaPairsChanged = 0
    while(iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:
            for i in range(oS.m):
                alphaPairsChanged += innerL(i, oS)
            print 'fullSet, iter: %d i: %d, pairs changed %d' %\
            (iter, i, alphaPairsChanged)
            iter += 1
        else:
            nonBoundIs= nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i, oS)
                print 'non-bound, iter: %d i: %d, pairs changed %d' % \
                (iter, i, alphaPairsChanged)
            iter += 1
        if entireSet: entireSet = False
        elif (alphaPairsChanged == 0): entireSet = True
        print 'iteration number: %d' % iter
    return oS.b, oS.alphas

#计算权值
def calcWs(alphas, dataArr, classLabels):
    X = mat(dataArr); labelMat = mat(classLabels).transpose()
    m, n = shape(X)
    w = zeros((n,1))
    for i in range(m):
        w += multiply(alphas[i] * labelMat[i], X[i, :].T)
    return w

#根据核函数做出变换
def kernelTrans(X, A, kTup):
    m, n = shape(X)
    K = mat(zeros((m, 1)))
    if kTup[0] == 'lin': K = X * A.T
    elif kTup[0] == 'rbf':
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow * deltaRow.T
        K = exp(K / (-1 * kTup[1] ** 2))
    else: raise NameError('Houston We Have a Problem -- That Kernel is not recognized')
    return K

#测试样例,并且比较效果
def testRbf(k1 = 1.5):
    dataArr, labelArr = loadDataSet('testSetRBF.txt')
    b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1))
    dataMat = mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd = nonzero(alphas.A > 0)[0]
    sVs = dataMat[svInd]
    labelSV = labelMat[svInd]
    print 'there are %d Support Vectors' % shape(sVs)[0]
    m, n = shape(dataMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs, dataMat[i, :], ('rbf', k1))
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]): errorCount += 1
    print 'the training error rate is: %f' % (float(errorCount )/ m)
    dataArr, labelArr = loadDataSet('testSetRBF2.txt')
    errorCount = 0
    dataMat = mat(dataArr); labelMat = mat(labelArr).transpose()
    m, n = shape(dataMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs, dataMat[i, :], ('rbf', k1))
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]) : errorCount+=1
    print 'the test error rate is: %f' % (float(errorCount) / m)
    # xcord0 = []
    # ycord0 = []
    # xcord1 = []
    # ycord1 = []
    # fr = open('testSetRBF.txt')
    # for line in fr.readlines():
    #     lineSplit = line.strip().split('\t')
    #     xPt = float(lineSplit[0])
    #     yPt = float(lineSplit[1])
    #     label = float(lineSplit[2])
    #     if (label < 0):
    #         xcord0.append(xPt)
    #         ycord0.append(yPt)
    #     else:
    #         xcord1.append(xPt)
    #         ycord1.append(yPt)

    # fr.close()
    # fig = plt.figure()
    # ax = fig.add_subplot(111)
    # ax.scatter(xcord0,ycord0, marker='s', s=90)
    # ax.scatter(xcord1,ycord1, marker='o', s=50, c='red')
    # plt.title('Support Vectors Circled')
    # sv = array(sVs)
    # for li in range(shape(sv)[0]):
    #     circle = Circle((sv[li][0], sv[li][1]), 0.05, facecolor='none', edgecolor=(0,0.8,0.8), linewidth=3, alpha=0.5)
    #     ax.add_patch(circle)
    # ax.axis([-1,1,-1,1])
    # plt.show()

#读取图像文件(手写识别)
def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect
def loadImages(dirName):
    from os import listdir
    hwLabels = []
    trainingFileList = listdir(dirName)           #load the training set
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]     #take off .txt
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9: hwLabels.append(-1)
        else: hwLabels.append(1)
        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
    return trainingMat, hwLabels    

#测试核函数为高斯核的效果
def testDigits(kTup=('rbf', 10)):
    dataArr,labelArr = loadImages('trainingDigits')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd] 
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount)/m)
    dataArr,labelArr = loadImages('testDigits')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1    
    print "the test error rate is: %f" % (float(errorCount)/m) 
testDigits(('rbf', 10))

#测试代码
# dataArr, labelArr = loadDataSet('testSet.txt');
# b, alphas = smoP(dataArr, labelArr, 0.6, 0.01, 40)
# ws = calcWs(alphas, dataArr, labelArr)
# print(ws)
# print(alphas)
# print(b)
# t1 = 0.0
# t2 = 0.0
# for i in range(len(alphas)):
#     if alphas[i] > 0.0:
#         print dataArr[i]
#         t1 += alphas[i] * dataArr[i][0] * labelArr[i]
#         t2 += alphas[i] * dataArr[i][1] * labelArr[i]
# print(t1)
# print(t2)

svm数据可视化

非线性可分的数据

from numpy import *
import matplotlib
import matplotlib.pyplot as plt

xcord0 = []; ycord0 = []; xcord1 = []; ycord1 = []
markers =[]
colors =[]
fr = open('testSet.txt')#this file was generated by 2normalGen.py
for line in fr.readlines():
    lineSplit = line.strip().split('\t')
    xPt = float(lineSplit[0])
    yPt = float(lineSplit[1])
    label = int(lineSplit[2])
    if (label == 0):
        xcord0.append(xPt)
        ycord0.append(yPt)
    else:
        xcord1.append(xPt)
        ycord1.append(yPt)

fr.close()
fig = plt.figure()
ax = fig.add_subplot(221)
xcord0 = []; ycord0 = []; xcord1 = []; ycord1 = []
for i in range(300):
    [x,y] = random.uniform(0,1,2)
    if ((x > 0.5) and (y < 0.5)) or ((x < 0.5) and (y > 0.5)):
        xcord0.append(x); ycord0.append(y)
    else:
        xcord1.append(x); ycord1.append(y)
ax.scatter(xcord0,ycord0, marker='s', s=90)
ax.scatter(xcord1,ycord1, marker='o', s=50, c='red')
plt.title('A')
ax = fig.add_subplot(222)
xcord0 = random.standard_normal(150); ycord0 = random.standard_normal(150)
xcord1 = random.standard_normal(150)+2.0; ycord1 = random.standard_normal(150)+2.0
ax.scatter(xcord0,ycord0, marker='s', s=90)
ax.scatter(xcord1,ycord1, marker='o', s=50, c='red')
plt.title('B')
ax = fig.add_subplot(223)
xcord0 = []; ycord0 = []; xcord1 = []; ycord1 = []
for i in range(300):
    [x,y] = random.uniform(0,1,2)
    if (x > 0.5):
        xcord0.append(x*cos(2.0*pi*y)); ycord0.append(x*sin(2.0*pi*y))
    else:
        xcord1.append(x*cos(2.0*pi*y)); ycord1.append(x*sin(2.0*pi*y))
ax.scatter(xcord0,ycord0, marker='s', s=90)
ax.scatter(xcord1,ycord1, marker='o', s=50, c='red')
plt.title('C')
ax = fig.add_subplot(224)
xcord1 = zeros(150); ycord1 = zeros(150)
xcord0 = random.uniform(-3,3,350); ycord0 = random.uniform(-3,3,350);
xcord1[0:50] = 0.3*random.standard_normal(50)+2.0; ycord1[0:50] = 0.3*random.standard_normal(50)+2.0

xcord1[50:100] = 0.3*random.standard_normal(50)-2.0; ycord1[50:100] = 0.3*random.standard_normal(50)-3.0

xcord1[100:150] = 0.3*random.standard_normal(50)+1.0; ycord1[100:150] = 0.3*random.standard_normal(50)
ax.scatter(xcord0,ycord0, marker='s', s=90)
ax.scatter(xcord1,ycord1, marker='o', s=50, c='red')
plt.title('D')
plt.show()

支持向量可视化

#其中参数是有svm算法得出的结果
from numpy import *
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.patches import Circle

xcord0 = []
ycord0 = []
xcord1 = []
ycord1 = []
markers =[]
colors =[]
fr = open('testSet.txt')#this file was generated by 2normalGen.py
for line in fr.readlines():
    lineSplit = line.strip().split('\t')
    xPt = float(lineSplit[0])
    yPt = float(lineSplit[1])
    label = int(lineSplit[2])
    if (label == -1):
        xcord0.append(xPt)
        ycord0.append(yPt)
    else:
        xcord1.append(xPt)
        ycord1.append(yPt)

fr.close()
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord0,ycord0, marker='s', s=90)
ax.scatter(xcord1,ycord1, marker='o', s=50, c='red')
plt.title('Support Vectors Circled')
circle = Circle((4.6581910000000004, 3.507396), 0.5, facecolor='none', edgecolor=(0,0.8,0.8), linewidth=3, alpha=0.5)
ax.add_patch(circle)
circle = Circle((3.4570959999999999, -0.082215999999999997), 0.5, facecolor='none', edgecolor=(0,0.8,0.8), linewidth=3, alpha=0.5)
ax.add_patch(circle)
circle = Circle((6.0805730000000002, 0.41888599999999998), 0.5, facecolor='none', edgecolor=(0,0.8,0.8), linewidth=3, alpha=0.5)
ax.add_patch(circle)
#plt.plot([2.3,8.5], [-6,6]) #seperating hyperplane
b = -3.75567; w0=0.8065; w1=-0.2761
x = arange(-2.0, 12.0, 0.1)
y = (-w0*x - b)/w1
ax.plot(x,y)
ax.axis([-2,12,-8,6])
plt.show()

随机生成非线性可分的数据

from numpy import *
import matplotlib
import matplotlib.pyplot as plt

xcord0 = []; ycord0 = []; xcord1 = []; ycord1 = []
fw = open('testSetRBF2.txt', 'w')#generate data

fig = plt.figure()
ax = fig.add_subplot(111)
xcord0 = []; ycord0 = []; xcord1 = []; ycord1 = []
for i in range(100):
    [x,y] = random.uniform(0,1,2)
    xpt=x*cos(2.0*pi*y); ypt = x*sin(2.0*pi*y)
    if (x > 0.5):
        xcord0.append(xpt); ycord0.append(ypt)
        label = -1.0
    else:
        xcord1.append(xpt); ycord1.append(ypt)
        label = 1.0
    fw.write('%f\t%f\t%f\n' % (xpt, ypt, label))
ax.scatter(xcord0,ycord0, marker='s', s=90)
ax.scatter(xcord1,ycord1, marker='o', s=50, c='red')
plt.title('Non-linearly Separable Data for Kernel Method')
plt.show()
fw.close()