机器学习实战-朴素贝叶斯

下面的例子是用于文本分析

import operator
import numpy as np
import feedparser as fp
def loadDataSet():#0表示非侮辱言论,1表示侮辱言论
    postingList = [['my', 'dog', 'has', 'flea',
                    'problems', 'helo', 'please'],
                    ['maybe', 'not', 'take', 'him',
                    'to', 'dog', 'park', 'stupid'],
                    ['my', 'dalmation', 'is', 'so',
                    'cute', 'I', 'love', 'him'],
                    ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                    ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to',
                    'stop', 'him'],
                    ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0, 1, 0, 1, 0, 1]
    return postingList, classVec

#将数据集中出现的所有单词放到一个向量里,做成词汇表
def createVocabList(dataSet):
    vocabSet = set([])
    for document in dataSet:
        vocabSet = vocabSet | set(document)
    return list(vocabSet)

#每一个数据样本都变成长度与词汇表相同的向量,如果样本中没有单词就是0,有就是1
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
    return returnVec

#与上面的函数作用相似,区别在于+=1
def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec    

#贝叶斯公式计算,分母相同都是p(w)不用考虑,因为独立事件,所以单个特征相乘即可,log可以避免曲线变型
def trainNB0(trainMatrix, tarinCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(tarinCategory) / float(numTrainDocs)
    # p0Num = zeros(numWords) 0容易使概率结果为0,所以分子分母都加1
    # p1Num = zeros(numWords)
    # p0Denom = p1Denom = 0.0
    p0Num = np.ones(numWords)
    p1Num = np.ones(numWords)
    p0Denom = p1Denom = 2.0
    for i in range(numTrainDocs):
        if tarinCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = np.log(p1Num / p1Denom)
    p0Vect = np.log(p0Num / p0Denom)
    return p0Vect, p1Vect, pAbusive

#log的+反应概率相乘
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)
    p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else:
        return 0

def testingNB():
    listOposts, listClasses = loadDataSet()
    myVocabList = createVocabList(listOposts)
    trainMat=[]
    for postinDoc in listOposts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(np.array(trainMat), np.array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
    print (testEntry, 'classified as: ',
        classifyNB(thisDoc, p0V, p1V, pAb))
    testEntry = ['stupid', 'garbage']
    thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
    print (testEntry, 'classified as: ',
        classifyNB(thisDoc, p0V, p1V, pAb))

#正则式拆分文本
def textParse(bigString):
    import re
    listOfToken = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfToken if len(tok) > 2]

#垃圾邮件过滤
def spamTest():
    docList = []; classList = []; fullText = []
    for i in range(1,26):
        wordList = textParse(open('f:/email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('f:/email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    trainingSet = list(range(50)); 
    testSet = []
    for i in range(10):
        randIndex = int(np.random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat = []; trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print('the error rate is: ',float(errorCount)/ len(testSet))

#统计高频词
def calcMostFreq(vocabList, fullText):
    freqDict={}
    for token in vocabList:
        freqDict[token] = fullText.count(token)
    #iteritems - > items
    sortedFreq = sorted(freqDict.items(), key = operator.itemgetter(1), reverse = True)
    return sortedFreq[:30]

#rss分析
def localWords(feed1, feed0):
    docList = []; classList = []; fullText = []
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    for i in range(minLen):
        wordList = textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    top30Word = calcMostFreq(vocabList, fullText)
    for pairW in top30Word:
        if pairW[0] in vocabList:
            vocabList.remove(pairW[0])
    trainingSet = list(range(2 * minLen));
    testSet= []
    for i in range(20):
        randIndex = int(np.random.uniform(0,len(trainingSet
            )))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat = []; trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print('the error rate is: ', float(errorCount)/ len(testSet))
    return vocabList, p0V, p1V

#返回与类别有关的单词
def getTopWords(ny, sf):
    fw = open('f:/test.txt', 'w')
    vocabList, p0V, p1V, = localWords(ny, sf)
    topNY = []; topSF = []
    for i in range(len(p0V)):
        if p0V[i] > -6.0 : topSF.append((vocabList[i], p0V[i]))
        if p1V[i] > -6.0 : topNY.append((vocabList[i], p1V[i]))
    sortedSF = sorted(topSF, key = lambda pair:pair[1], reverse = True)
    sortedSF = sortedSF[:10]
    fw.write('SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF*\n')
    #print ('SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF*')
    for item in sortedSF:
        fw.write(item[0] + '\n')
    #   print (item[0])
    sortedNY = sorted(topNY, key = lambda pair:pair[1], reverse = True)
    sortedNY = sortedNY[:10]
    fw.write('NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY*\n')
    #print ('NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY*')
    for item in sortedNY:
        fw.write(item[0] + '\n')
    #   print (item[0])

ny = fp.parse('http://newyork.craigslist.org/stp/index.rss')
sf = fp.parse('http://sfbay.craigslist.org/stp/index.rss')
getTopWords(ny, sf)