机器学习实战-logistic回归

from numpy import *
def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

#梯度上升算法,运算次数多,准确度高
def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    m, n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500 
    weights = ones((n, 1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix*weights)
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose()*error
    return weights

#随机梯度上升算法,每次选择一个点迭代
def stocGradAscent0(dataMatrix, classLabels):
    m, n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

#随机梯度上升算法改良,每次随机选择一个点迭代,alpha每次都会变化
def stocGradAscent1(dataMatrix, classLabels, numIter = 150):
    m, n = shape(dataMatrix)
    weights = ones(n)
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            alpha = 4/(1.0+j+i) + 0.01
            randIndex = int(random.uniform(0, len(dataIndex)))
            h = sigmoid(sum(dataMatrix[randIndex] * weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights  

#分割线作图,令sigmod的输入函数z(∑wx)为0,选取其中两维作为xy轴
def plotBestFit(wei):
    import matplotlib.pyplot as plt
    #weights = wei.getA()#返回矩阵的数组形式
    weights = wei#SGD算法不需要数组
    dataMat, labelMat = loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i,1])
            ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1])
            ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s = 30, c = 'red', marker = 's')
    ax.scatter(xcord2, ycord2, s = 30, c = 'green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0] - weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()

#分类器
def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5 : return 1.0
    else: return 0.0

#训练集和测试集
def colicTest():
    frTrain = open('horseColicTraining.txt')
    frTest = open('horseColicTest.txt')
    trainingSet = []
    trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr = []
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 500)
    errorCount = 0; numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr = []
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights)) != int(currLine[21]):
            errorCount += 1
    errorRate = float(errorCount) / numTestVec
    print('the error rate of this test is: %f' % errorRate)
    return errorRate

#计算最终错误率的期望
def multiTest():
    numTests = 10; errorSum = 0.0
    for k in range(numTests):
        errorSum += colicTest()
    print('after %d iterations the average error rate is: %f' %
        (numTests, errorSum/float(numTests)))

multiTest()