机器学习实战-决策树

决策树算法

from math import log
import operator
def createDataSet():
    dataSet = [[1,0,'yes'],
                [1,0,'yes'],
                [0,1,'no'],
                [0,1,'no'],
                [1,0,'no']]
    labels = ['no surfacing','flippers']#对应1,0的标签
    return dataSet, labels

def calcShannonEnt(dataSet):#计算香农熵的期望值
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    ShannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        ShannonEnt -= prob * log(prob,2)
    return ShannonEnt

def splitDataSet(dataSet, axis, value):
    #用于分离矩阵,axis是选中的最佳划分特征所在的列号,value是该特征的一个值
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            #axis这一列就相当于被删了,与下面del标签labels里的删除保持一致
            reducedFeatVec.extend(featVec[axis+1:])
            #注意extend和append在list中的区别
            retDataSet.append(reducedFeatVec)
    return retDataSet

def chooseBestFeatureToSplit(dataSet):
#选择最好的特征进行划分,主要是使得熵增益增加,即香农熵减小,数据混乱程度减小
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)         
        infoGain = baseEntropy - newEntropy
        if(infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

def majorityCnt(classList):
#如果只有一种特征但是结果不唯一,那么就选择相同结果出现最多次的答案作为结果
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(),
        key = operator.itemgetter(1),reverse = True)
    return sortedClassCount[0][0]

def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]

    #如果改划分的集合里结果都一样
    if classList.count(classList[0]) == len(classList):
        return classList[0]

    #如果特征标签只剩下一个
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(
            splitDataSet(dataSet, bestFeat, value), subLabels)
    return myTree   

def classify(inputTree, featLabels, testVec):
#因为并不知道按特征分类的先后顺序,所以要写一个分类器
    firSides = list(inputTree.keys())
    firStr = firSides[0]
    secondDict = inputTree[firStr]
    featIndex = featLabels.index(firStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, testVec)
            else : classLabel = secondDict[key]
    return classLabel

#序列化操作,注意是wb和rb
def storeTree(inputTree, filename):
    import pickle
    fw = open(filename, 'wb')
    pickle.dump(inputTree, fw)
    fw.close()
def grabTree(filename):
    import pickle
    fr = open(filename,'rb')
    return pickle.load(fr)

决策树作图

import matplotlib.pyplot as plt
#boxstyle是结点的形状,fc是颜色深度
decisionNode = dict(boxstyle = "sawtooth", fc = "0.8")
leafNode = dict(boxstyle = "round4", fc = "0.8")
arrow_args = dict(arrowstyle = "<-")

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    #nodeTxt表示标注的内容,centerPt表示当前结点的坐标,parentPt是父结点的坐标
    #node是节点类型
    createPlot.ax1.annotate(nodeTxt, xy = parentPt,
        xycoords = 'axes fraction',
        xytext = centerPt, textcoords = 'axes fraction',
        va = 'center', ha = 'center', bbox = nodeType,
        arrowprops = arrow_args)

def getNumLeafs(myTree):
#获得所有结点的个数,作为作图的宽度
    numLeafs = 0
    firstSides = list(myTree.keys())
    firstStr = firstSides[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else : numLeafs += 1
    return numLeafs

def getTreeDepth(myTree):
    #获得树的高度
    maxDepth = 0
    firstSides = list(myTree.keys())
    firstStr = firstSides[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else :thisDepth = 1
        if thisDepth > maxDepth : maxDepth = thisDepth
    return maxDepth

def retrieveTree(i):#测试样例
    listOfTree = [{'no surfacing' : {0 : 'no', 1 : {'flippers':
                    {0 : 'no', 1 : 'yes'}}}},
                    {'no surfacing':{0:'no', 1 : {'flippers':
                    {0:{'head':{0:'no', 1 : 'yes'}}, 1:'no'
                    }}}}]
    return listOfTree[i]

def plotMidText(cntrPt, parentPt, txtString):
#两个结点中间的文字,即某个特征的值
    xMid = (parentPt[0] - cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1] - cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString)

def plotTree(myTree, parentPt, nodeTxt):
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstSides = list(myTree.keys())
    firstStr = firstSides[0]
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 /
    plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            plotTree(secondDict[key], cntrPt, str(key))
        else :
            plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff),
                cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

def createPlot(inTree):
    fig = plt.figure(1, facecolor = 'white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    #以下为定义的常量
    createPlot.ax1 = plt.subplot(111, frameon = False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))#树的宽度
    plotTree.totalD = float(getTreeDepth(inTree))#树的高度

    plotTree.xOff = -0.5/plotTree.totalW;
    #表示最近画完的一个结点横坐标

    plotTree.yOff = 1.0;
    #表示最近画完的一个结点的纵坐标

    #这里定义plotTree.xOff,plotTree.yOff的初始状态

    plotTree(inTree, (0.5, 1.0), ' ')
    plt.show()